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This study is on the use of multiple Delayed Resonators (DR) in suppressing
tonal vibration of multi-degree-of-freedom mechanical structures. The DR is a
recently introduced, actively tunable vibration absorber which converts a
conventional passive absorber into a marginally stable resonator. This structure
absorbs all the vibratory energy at its point of attachment. Control forces in the
form of proportional acceleration feedback with variable gains and time delays
are considered here. Attractive features of DR have already been demonstrated
for single DR absorber cases. When excitation has multiple harmonics, multiple
DRs can be used, each DR suppressing one of the harmonics. The stability
assessment, however, becomes very complex in this case, due to the presence of
unrelated time delays in the system. Therefore, a simpler situation is considered
here; single harmonic excitation and multiple identical DRs acting on the
system. A strategy called ``Stability charts'' is used not only to resolve the
stability question but also to ®nd out the tuning speed of the absorption. An
example case of two identical DRs on a 3-DOF system is presented. The results
demonstrate the feasibility of using multiple DR absorbers.

# 1999 Academic Press

1. INTRODUCTION

Dynamic vibration absorbers have been effectively used to remove undesirable
oscillations from mechanical structures. The ground rule of vibration absorption
is to properly ``sensitize'' the absorber substructure such that it becomes
absorbent of the vibratory energy. If the excitation is tonal (i.e., pure harmonic),
this ``sensitization'' can be done very ef®ciently by bringing the absorber to
resonance at the excitation frequency.
In DR the absorber subsection is sensitized to the excitation frequency using a

time delayed acceleration feedback (see Figure 1). It converts the dissipative
passive absorber structure (Figure 1(a)) into a conservative (or marginally stable)
one, i.e., a resonator (Figure 1(b)). This technique offers a number of
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advantages: real time tunability, perfect tonal suppression, wide range of
frequencies, simplicity of the control implementation, and robust design [1±6].
In earlier studies, the DR implementation was limited to suppressing

vibrations at a single point of absorber attachment, on multi degree-of-freedom
(MDOF) structures [4, 5, and 7]. When the objective is to quiet a number of
locations on the system, multiple vibration absorbers are used. This study deals
with multiple DR absorbers, and the issues associated with their design and
implementation.
Typically, the time delay in a control loop is a destabilizing factor. As the DR

absorber is tuned, the stability of the combined system (primary system equipped
with the DR absorbers) should be assured. There is a fair amount of recent
literature on the stability of delayed linear systems [3, 8±11]. These investigations
consider only one delay or commensurate delays (i.e., integer multiples of one
single delay). When the delays are totally unrelated, the analysis becomes very
tedious. This would be the case for non-identical DR's trying to tune to single or
multiple frequencies. Considering these dif®culties, a simpler problem is
proposed: multiple DR absorbers which have identical physical properties and
the primary structure being excited by a single harmonic force.
Some design tools for the selection of the absorber parameters are also presented

such that the desired absorption properties are achieved, in particular the
absorber's tuning speed to time varying excitation frequencies. The text is
composed as follows. The DR with acceleration feedback is brie¯y reviewed in
section 2. Section 3 addresses the use of multiple identical DRs as vibration
absorbers for MDOF structures. The governing equations of motion and the
stability analysis are presented in this section. The parametric selection of the DR
absorbers is addressed in section 4. The numerical results and simulations are given
in section 5. Section 6 concludes the study and suggests some future research.

2. THE DELAYED RESONATOR CONCEPT

A brief overview of DR is presented here for clarity. The equation of motion
governing the absorber dynamics (Figure 1(b)) is

ma�xa�t� � ca _xa�t� � kaxa�t� ÿ g�xa�tÿ t� � 0, �1�
where the last term represents the delayed acceleration feedback. The Laplace
domain representation of this equation yields the characteristic equation

Figure 1. (a) The original passive absorber, (b) recon®gured dynamics, Delayed Resonator with
acceleration feedback.
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mas
2 � cas� ka ÿ gs2eÿts � 0: �2�

Without feedback (g=0) this structure is dissipative with two characteristic
roots (poles) on the left half of the complex plane. For g and t> 0, however,
these two ®nite stable roots are supplemented by in®nitely many additional ®nite
roots. Note that these characteristic roots (poles) of equation (2) are discretely
located on s= a+jo, and the following relation holds:

g � �k mas
2 � cas� ka k = k s2 k�eta, �3�

where k � k denotes the magnitude of the argument.
Using equation (3), the following observation can be made:

g � 0 : there are two finite stable poles and all remaining poles are at

a � ÿ1,

g � �1 : there are two poles at s � 0, and the rest are at a � �1: �4�
Considering these observations and taking into account the continuity of the
root loci for a given delay, t, and as g varies from 0 to 1, it is obvious that the
roots of equation (2) move from stable left half to the unstable right half of the
complex plane. For a certain critical gain gc one pair of poles reaches the
imaginary axis. At this operating point, the DR is a perfect resonator, and the
imaginary characteristic roots are s=2joc, where oc is the resonance frequency
and j=

�������ÿ1p
. The subscript c implies the crossing of the root loci on the

imaginary axis. The control parameters gc and tc of concern can be found by
substituting the desired s=2joc into equation (2) as

gc � �1=o2
c�

������������������������������������������������
�caoc�2 � �mao2

c ÿ ka�2
q

, �5�

tc � �1=oc�ftanÿ1�caoc=�mao2
c ÿ ka�� � 2�`ÿ 1�pg, ` � 1, 2, . . . : �6�

When these gc and tc are used the DR structure (Figure 1(b)) mimics a resonator
at frequency oc. In turn this resonator forms an ideal absorber of tonal
oscillations at oc. Returning to the distribution of roots, for g> gc the dominant
roots move to the unstable right half of the complex plane, and therefore, render
the DR structure unstable. The objective of the control is to maintain the DR
absorber at this marginally stable point. On the DR stability, further discussions
can be found in references [3, 5].

3. MULTIPLE IDENTICAL DR'S AS VIBRATION ABSORBERS FOR MDOF
STRUCTURES

Multiple DR's are considered to suppress structural oscillations at several
locations on a MDOF primary system. If the excitation were simple harmonic,
the tuned DR absorbers could enforce arti®cial nodes at their points of
attachment. There are a number of practical motivations for this: e.g., excited
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large plates with sensitive devices at discrete locations; beams with similar
vibration elimination requirements.
Several design considerations emanate on this basic proposition, mainly on the

selection of the DR's structural properties (ma, ca, and ka). If they were different
for each DR (non-identical DR's) then the tuning gains and delays to the same
excitation frequency (oc) would also be different as per equations (5) and (6).
This brings a major dif®culty in the stability analysis, due to the presence of
multiple unrelated delay elements in the system. As a remedy identical DR
absorbers are proposed. Notice two critical aspects: (1) when tuned to the only
excitation frequency (oc), these absorbers use the same g and t; (2) this tuning
effort is not in¯uenced by the primary MDOF system (see equations (5) and (6)).
Inversely, there are no structural constraints on the MDOF primary relevant to
the tuning. Even this identical DR case, however, yields some cumbersome
mathematics when the system stability is studied as described in the following
sections.

3.1. THE GOVERNING EQUATIONS

Attached to a general n-DOF system under harmonic excitation, r identical
DR's (rE n) are considered. Each DR is properly tuned to the excitation
frequency o. They eliminate the oscillation of the primary structure at the points
of attachment, creating distributed arti®cial nodes along the primary. A typical
system is depicted in Figure 2.
The state-space representation of the system dynamics is written in the form:

_y�t� � A0y�t� � gAt _y�tÿ t� � f�t�, �7�
where

y�t� � fxa1, _xa1, . . . , xar, _xar|����������������{z����������������}
2r

, x1, _x1, . . . , xn, _xn|�������������{z�������������}
2n

gT,

f�t� � f0, . . . , 0|����{z����}
2r

, 0, f1, 0, f2, . . . , 0, fn|����������������{z����������������}
2n

gT 2 R2�n�r�61

are the state variable and excitation vectors. The elastic de¯ections of the
primary structure and absorbers are denoted by xi(t), i=1, . . . , n and xaj(t),
j=1, 2, . . . , r, respectively. A0 and At 2 R2�n�r�62�n�r� are the corresponding
system matrices, t and g are the identical time delays and feedback gains for all
DR's.
The Laplace transform of equation (7) is

�sIÿ A0 ÿ gs eÿtsAt�Y�s� � F�s� ) H�s, g, t�Y�s� � F�s�: �8�
The state vector y(t) can be obtained utilizing the inverse Laplace transform.
Note that the terms of matrix H(s, g, t) in equation (8) not rational functions of
s but transcendental, unlike the case of a non-delayed system. The poles of the
system are those (complex) values of s for which |H| is zero. For non-delayed
systems, i.e., when g=0, these poles are the eigenvalues of the system matrix A0,
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i.e.,

det�sIÿ A0� � 0: �9�

For the time-delayed system, however, equation (9) is augmented as

Q�s, g, t� � det�s�Iÿ g eÿtsAt� ÿ A0� � 0: �10�

Equation (10) has in®nite number of roots, namely the spectrum of the time-
delayed system.

Figure 2. Con®guration of the multiple Delayed Resonator absorbers for multi-degree-of-free-
dom structures.
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The system of equations (8) can be rewritten in the explicit form

h11 h12 � � � h1 2�n�r�
h21 h22 � � � h2 2�n�r�

..

. ..
. ..

. ..
.

h2�n�r� 1 h2�n�r� 2 � � � h2�n�r� 2�n�r�

0BBBB@
1CCCCA

Xa1�s�
..
.

Xaq�s�
..
.

X1�s�
..
.

Xp�s�
..
.

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;
2�n�r�61

�

02r61

0
F1�s�

..

.

0
Fn�s�

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
2�n�r�61

, �11�

where {hij(s, g, t)}=H(s, g, t). It is shown that the displacement of the primary
structure at the pth mass location can be determined utilizing Cramer's rule [5]:

xp�t� � Lÿ1fXp�s�g � Lÿ1 �mas
2 � cas� ka ÿ gs2 eÿts�Gp�s, g, t�

Q�s, g, t�
� �

, �12�

where Gp is a function of s, the driving forces, and all the delay terms except the
one corresponding to qth absorber which is attached to pth mass, and Q is
de®ned in equation (10). Equation (12) implies that for a properly tuned DR, the
primary structure should exhibit no oscillatory motion at location p. Notice that
the characteristic equation (2) is a factor of the numerator in equation (12), and
it is forced to be zero for s=2joc if g and t are selected as in equations (5) and
(6). These control parameters are functions of the frequency of excitation and
properties of the absorber structure itself. That is, the control logic does not
require any information from the primary structure, thus they are decoupled.

3.2. STABILITY ANALYSIS OF THE COMBINED SYSTEM

The stability is an important property of any feedback control system. For a
system with variable time delay, stability analysis is relatively more dif®cult due
to the transcendental terms in the characteristic equation.
The suf®cient and necessary condition for asymptotic stability is that the roots

of the transcendental characteristics equation (10) have negative real parts. The
veri®cation of the root locations, however, is not a trivial task. There are some
fundamental methods suitable for such problems: e.g. Root-Locus, Nyquist,
Michailov and Pontryagin criteria [10±15]. One makes a qualitative remark here
that none of these methods is suitable for multiple time delay cases.
It is easy to show from the characteristic equation (10) that the delay terms in

the characteristic equation appear in the form of eÿkts, kE r. Delays such as
these, which are integer multiples of a single delay t, are called commensurate
delays [16]. Even in this relatively simple case, the stability problem is not a
straightforward task to handle, as explained later in the text.
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The characteristic equation (10) can be written in a simpli®ed form asXr
k�0

Hk�s�gk eÿkts � 0: �13�

In the most general case, all these commensurate delay terms eÿts � � � eÿrts are
present in the characteristic equation (13). A ``peeling-off'' procedure is adopted
to eliminate the highest order delay terms in this equation [16]. This reduces the
problem of commensurate delays to the one with single delay. Following is a
brief explanation of this procedure. Equation (13) is rewritten as

H0�s� �H1�s�g eÿts � � � � �Hr�s�gr eÿrts � 0: �14�
one is interested in the purely imaginary solutions of this equation to ®nd out
the marginal stability bounds. For such roots, s, ÿs (i.e., the complex conjugate
of s) must also be a root. Hence, substituting ÿs into this equation one obtains

H0 �H1g eÿts � � � � �Hrg
r eÿrts � 0, �H0 � �H1g ets � � � � � �Hrg

r erts � 0, �15�
where

�H0 � H0�ÿs�, �H1 � H1�ÿs�, . . . , �Hr � Hr�ÿs�: �16�
The second equation (15) is multiplied by eÿrts, solved for eÿrts substitute which
is into the ®rst equation. This eliminates the highest order term, eÿrts, and yields

�g2rHr
�Hr ÿH0

�H0� � �g2rÿ2Hr
�Hrÿ1 ÿH1

�H0�g eÿts � � � �

� �g2Hr
�H1 ÿHrÿ1 �H0�grÿ1 eÿ�rÿ1�ts � 0: �17�

Successive elimination of eÿ(rÿ1)ts, eÿ(rÿ2)ts, . . . , eÿ2ts terms in equation (17)
recasts the characteristic equation in its most general form as

M�g, s� �N�g, s�g eÿts � 0, �18�
where M and N are polynomials of s with respective degrees of a and b and
functions of feedback gain g. A case study for this procedure is presented in the
simulations section for clarity.
When the combined system is marginally stable, there are at least two roots on

the imaginary axis, i.e., s=2jocs. Enforcing this into equation (18) yields the
delay and feedback values that make the combined system marginally stable as

gcs �kM�gcs, jocs�=N�gcs, jocs� k , �19�

tcs � 1=ocs �2`ÿ 1�pÿ �M�gcs, jocs�
N�gcs, jocs�

� �
` � 1, 2 . . . , �20�

where � denotes the angle of the argument. Note that equation (19) is an implicit
equation in terms of gcs, and could have multiple solutions.
One utilizes the stability analysis of section 2 for the DR alone, on the

combined system. An equation for the magnitude is obtained as
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g � �kM�g, s� ks�a�jo = k N�s, g� ks�a�jo� eta, �21�
where a � Re�s�. From equation (21), it is easy to evaluate that for g=0, there
are a stable poles which are the roots of polynomial M(s) (or simply the
eigenvalues of the uncontrolled system matrix A0) while all other roots are at
a=ÿ1. As g!+1, b poles approach the roots of N(s) and the rest tend to
Re�s� � �1.
Thus, increasing feedback gain, g, from 0 to +1 while the time delay t is

kept constant, drives the combined system through the stable, marginally stable,
and ultimately to the unstable behavior. For a particular delay t= t0, the
combined system crossings, ocsi(t0) are determined from equation (20) and
corresponding gains, gcsi, from equation (19), where the subscript i=1, 2, . . .
refers to the ®rst, second, etc., crossings. To ensure stability of the system, the
feedback gain g should be smaller than the infemum of these gcsi(ocsi) values.
That is,

g < gmin�ocsi�to��, �22�
where

gmin � infemum
gcs�ocs1�
gcs�ocs2�
gcs�ocs3�

8<:
9=;, for t � t0: �23�

The plot of gmin(ocs) versus tcs(ocs) is, therefore, the lower envelope of the
parameterized stability plot of the combined system, gcs(ocs) versus tcs(ocs). This
envelope is numerically obtained for each ``ma, ca, ka'' set of absorber
parameters. The procedure is explained in detail in section 5.
The ratio of the combined system gain and DR gain (gcs(t)/gc(t)) can be

de®ned as the ``stability margin'' of the control system, at the particular delay
value t. The comparison of the gcs(oc) versus tcs(oc) plot of the combined system
with the gc(oc) versus tc(oc) plot of the DR reveals this stability margin for the
entire frequency spectrum. This picture also yields the frequency range for the
stable operation of the combined system. That is, for a given tc the system is
stable if gc < gcs or the stability margin is greater than one. An example of such
treatment is also presented in the simulations section.

4. PARAMETRIC INFLUENCE OF DESIGN SELECTION ON THE
ABSORPTION PERFORMANCE

An interesting question for a multiple DR application is the absorber tuning
speed when the excitation frequency varies. This feature is critical because it
represents the frequency tracking ability of the absorber. It is dictated by the
dominant characteristic roots of the system. For a given primary structure
(mi, ki, ci, i=1, 2, . . . , n), the DR's parameters (ma, ka, ca) should be selected
such that the dominant roots of the characteristic equation (13) are
appropriately positioned.
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Due to the transcendental nature of this characteristic equation, an analytical
approach is impossible. To resolve this, a practical implementation of Nyquist
criterion, as described below, is adopted from reference [4].
First, the Bromwich contour, encompassing the right half of the complex

plane, is traced for the Re�s� > 0 semi-in®nite domain, yielding no roots within
the contour (i.e., stable system). Next, the imaginary axis is shifted using
�s � s� a, a 2 R� and the Nyquist search for Re��s� > 0 semi-in®nite space is
repeated. This numerical search is performed for increasing values of a. When
the right-most characteristic roots are encountered in a= a0ÿ e to a= a0+ e
transition, where e 2 R� and e5 1, the Nyquist criterion ¯ags a switch from no
roots to some roots, respectively. This implies that the dominant roots fall in the
interval ÿ�a0 � e� < Re�s� < ÿ�a0 ÿ e�.
The transient behavior of the combined system is dictated by this dominant

pole. That is, the system exhibits a decay with a time constant of 1/a0.
The dynamics manifest a steady state within approximately four time constants
(4/a0). For the given absorber(s) ma, ka, ca, the system reacts with this tuning
speed. If this current setting is not satisfactory, alternate design parameters
should be tested. Notice that larger stability margin (of section 3.2) yields faster
tuning. This feature could be used as a design tool to improve the tuning speed.
This issue is explained further in section 5.

5. DYNAMIC SIMULATIONS AND RESULTS

To demonstrate the validity of using multiple DR's, a combination of two
identical DR's on a 3-DOF structure is studied (Figure 3). The system is excited
by a simple harmonic force at m2 location on the primary structure. The
objective is to eliminate the vibration of the other two masses, i.e., m1 and m3.
This is achieved by applying two DR's attached to these masses. The numerical
values for the primary structure are taken as: m1=m3=10 and m2=50 kg;
k1= k3=1 and k2=2 kN/m; c1= c3=20 and c2=25 Ns/m. This selection is
made for demonstration purposes only and has no direct practical
correspondence.
The state-space representation of the system is

_y�t� � A0y�t� � gAt _y�tÿ t� � f�t�; �24�
The matrices A0 and At are de®ned in Appendix A. f(t)={0, 0, 0, 0, 0, 0, 0,
f, 0, 0}T and y�t� � fxa1, _xa1, xa2, _xa2, x1, _x1, x2, _x2, x3, _x3gT are the force and
state vectors, respectively. In this case the characteristic equation is

H0�s� �H1�s�g eÿts �H2�s�g2 eÿ2ts � 0, �25�
where H0(s), H1(s), and H2(s) are polynomials of s with real coef®cients
presented in Appendix A.
The ``peeling-off'' method is used to eliminate eÿ2ts term ®rst. For this, the

system of equations

H0 �H1g eÿts �H2g
2 eÿ2ts � 0, �H0 � �H1g ets � �H2g

2 e2ts � 0 �26�
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is solved to eliminate eÿ2ts.This process yields

g eÿts � ��H0H0 ÿ g4 �H2H2�=�g2 �H1H2 ÿH1
�H0�: �27�

When the combined system is marginally stable, there are at least two roots of
the characteristic equation on the imaginary axis, i.e., s=2jocs. Introducing
this condition into equation (27), gives the delay and gain values that make the
combined system marginally stable as

gcs �
�H0�s�H0�s� ÿ g4cs

�H2�s�H2�s�
g2cs

�H1�s�H2�s� ÿH1�s��H0�s�
 

s�jocs

,

tcs � �1=ocs�f�2`ÿ 1�p� ��g2cs �H1�s�H2�s� ÿH1�s��H0�s��s�jocs
g ` � 1, 2, . . . : �28�

From equation (28) an important observation is that the feedback gain cannot
be determined explicitly for multiple DR cases. This is a major difference
between the single and multiple DR cases. Notice that equation (25) has
H2(s)=0 for single usage of DR. In this case, equation (28) re¯ects an explicit
expression for gcs, which was reported earlier [7].
The gcs(ocs) versus tcs(ocs) plots for the given system are generated using

equation (28). The following procedure is used: (1) An interval of ocs is taken

Figure 3. A generic case of two identical DR implementation on a 3-DOF structure.
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say (5 � � � 100 rad/s); (2) the gcs values which satisfy the ®rst equation in (28) for
an ocs are numerically calculated; (3) for a gcs and the corresponding ocs, the
second equation (28) yields a tcs. Notice that tcs is also multivalued due to the
crossing root loci identi®er `�� 1, 2, . . .�.
The lower envelop points of the operating points, {gcs, tcs}, ` � 1, 2, . . . , form

the marginal stability boundary for the combined system. For a lower value of
gcs below this envelop, i.e., gcs< infemum (gcs(tcs)), the system is stable. For
higher values, it is unstable. This judgment follows the ``D-subdivision'' principle
explained in references [8, 17] and applied for DR stability analysis in reference
[18]. Note that the g=0 (no feedback) line lies always in the stable zone.
These stability boundaries (which are alternatively known as the ``stability

chart'') are depicted in Figure 4(a) (by solid lines). The reasons for the jagged
appearance are: (1) the equally spaced ocs variation does not yield a smooth
spacing in tcs; (2) the gcs versus tcs curves exhibit looping outlook as explained in
reference [5]. This gives rise to the spikes such as points A and B.
For this plot the absorber s structural parameters are taken as: ma=1 kg,

ka=100 N/m, and ca=0�1 Ns/m. Note that this selection suggests a 1/35 mass
ratio for the absorber.
The comparison of the stability charts of the combined system and of the DR

reveals a stable frequency range for the absorption. Please note that for ideal
suppression the control maintains the DR on the stability border (dotted lines in
Figure 4(a)). These operating points should be in the stable operating zones of
the combined system. This condition yields stable operations in some ranges of
t, such as 0�52< t< 0�94 s, on the second root loci branch (` � 2).
Figure 4(b) depicts the correspondence between the delay t, and the frequency

oc of absorption. For instance, the stable interval of t given as example above,
corresponds to 9�5<oc< 12 rad/s.
This procedure can be used as a design tool for selecting the DR parameters

(ma, ka, ca). If, for instance, the excitation frequency falls outside a stable
(operable) frequency range, ma, ka, ca can be altered until the satisfactory
stability picture is reached. A parametric sensitivity analysis can also be
considered as an extension to this work.
Figure 4 contains the stability charts, which show the majority of the

operating points fall in the stable territory. However, the stability margin is not
large, and therefore the absorption transients are long. It should be noted that
the stability margin is, indeed, an indication of the location of the dominant
roots of the combined system. As proven earlier for single DR cases, the smaller
the stability margin the closer the dominant roots to the imaginary axis, and
therefore the longer the settling time [8, 14, 15]. This feature is shown next using
simulation examples.
For the above selection of primary system and DR absorbers settings, the

eigenvalues of the uncontrolled (g=0) combined system are found as

s1,2 � ÿ0�08562j9�8940, s3,4 � ÿ0�08812j3�1393, s5,6 � ÿ0�36732j9�1440,
s7,8 � ÿ0�87742j11�9799, s9,10 � ÿ2�39152j18�3604, �29�
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which means the real part of the dominant roots is at ÿ0�0856 (implying a
transient behavior of approximately 50 s), and the system natural frequencies are
roughly

3, 9, 10, 12, 19 rad=s: �30�
In order to verify the validity of the stability zones found in Figure 4, one

selects two operating points. One excitation frequency is selected to be in the
stable, and the other in the unstable zones. Figure 5 shows a test with the
excitation frequency oc=10 rad/s, which corresponds to one of the system
resonance frequencies (point S in Figure 4, stable operation). The DR tuning
parameters are gc=0�014 kg and tc=0�7854 s for this frequency. The
displacements of the primary structure at the points of attachment of the
two DR's decay exponentially, as shown in Figures 5(a) and (c). Figures 5(d)
and (e) display the absorber responses. The suppression takes effect in
approximately 100 s. Using Nyquist method, the real part of dominant roots is
found in the interval ÿ0�04<ÿa0<ÿ0�03 which corresponds to the settling time

Figure 4. (a) Stability charts: plot of gain vs. time delay for both combined system and DR,
(b) plot of excitation frequency vs. time delay for DR alone; � � � � , DR absorbers alone; Ð , com-
bined system; *, example operations.
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of 100< ts< 130 s. The time trace of x1 is exploded for the ®rst 10 s just to
highlight that there exists a low frequency component (Figure 5(a)). A Fast
Fourier Transform (FFT) is also given for this trace showing spectral peaks at
approximately 3�8 and 10 rad/s. The second peak is due to the excitation (i.e.,
the forced response), but the ®rst one corresponds to one of the system modes
which is lightly damped. For this operating point a system pole is located very
close to 2j3�8. This pole is the relocated form of s3,4 of equation (29) under the
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Figure 5. The time traces of system s response for the stable excitation frequency oc=10 rad/s
(point ``S'' in Figure 4): (a) absorber 1 point of attachment (m1), (b) excitation location (m2), (c)
absorber 2 point of attachment (m3), (d) absorber 1 (ma), (e) absorber 2 (ma).
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feedback. Both the excitation and the modal frequency vibrations are suppressed
later on.
Next, an unstable operating point is tested, U in Figure 4, which corresponds

to the excitation frequency oc=9 rad/s and again one of the system resonance
frequencies. The DR control parameters are gc=0�2348 kg and tc=1�0419 s.
Figure 6 shows the time response of x1(t) only. The displacements are oscillatory
but with amplitudes which increase exponentially. Obviously, this DR is not
usable for absorption at this frequency. The FFT of the ®rst 10 s trace shows,
again, similar spectral peaks: 3�8 rad/s (system modal frequency) and 9 rad/s
(excitation). Notice that the relocated pole is again very close to 2j3�8, by
coincidence.

6. CONCLUSIONS

The use of multiple DR absorbers is a viable technique to suppress tonal
oscillations completely at several locations on MDOF mechanical structures. The
stability of the entire system is addressed utilizing a stability chart strategy. A
peeling-off procedure is presented to simplify the stability assessment by
converting the problem of multiple DR's to a single delay representation. The
agreement between stability charts and simulated time responses is shown via
numerical examples. The stability margins and tuning times are observed from
these simulations.

Figure 6. The time trace of point of attachment of absorber 1 (x1), for the unstable excitation
frequency oc=9 rad/s (point ``U'' in Figure 4).
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The issues presented in this paper on the use of multiple DR's lend themselves
to further investigation. The following problems are currently being studied: (1)
multiple unrelated DR vibration absorbers utilized on MDOF structures against
multi-frequency excitations; (2) optimization algorithm for designing the DR's
parameters in order to improve absorption performance.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their constructive comments
that improved the quality of the paper. This work was sponsored in part by
grants from the National Science Foundation and the Variable Frequency
Vibration Elimination Consortium (Electric Boat and Pratt and Whitney).

REFERENCES

1. N. OLGAC 1995 U.S. Patent 5,431,261. Delayed resonators as active dynamic absor-
bers.

2. N. OLGAC and B. HOLM-HANSEN 1994 Journal of Sound and Vibration 176, 93±104.
A novel active vibration absorption technique: delayed resonator.

3. N. OLGAC and B. HOLM-HANSEN 1995 ASME Journal of Dynamic Systems,
Measurement, and Control 117, 513±519. Tunable active vibration absorber: the
delayed resonator.

4. N. OLGAC and B. HOLM-HANSEN 1995 Journal of Engineering Mechanics 121, 80±
89. Design considerations for delayed-resonator vibration absorbers.

5. N. OLGAC, H. ELMALI, M. HOSEK and M. RENZULLI 1997 ASME Journal of
Dynamic Systems, Measurement, and Control 119, 380±389. Active vibration control
of distributed systems using delayed resonator with acceleration feedback.

6. M. RENZULLI, R. GHOSH-ROY and N. OLGAC 1997 Proceedings of Third ARO
Workshop on Smart Structures. Robust control of the delayed resonator vibration
absorbers.

7. N. OLGAC and N. JALILI 1998, Journal of Sound and Vibration 218, 307±331. Modal
analysis of ¯exible beams with delayed resonator vibration absorber: theory and
experiment.

8. V. B. KOLMANOVSKI and V. R. NOSOV 1989 Stability of Functional Di�erential
Equations. London: Academic Press.

9. K. YOUCEF-TOUMI and J. BOBBETT 1991 ASME Journal of Dynamic Systems,
Measurement, and Control 113, 558±567. Stability of uncertain linear systems with
time delay.

10. A. THOWSEN 1982 IEE Proceedings 29, 73±75. Delay-independent asymptotic stabi-
lity of linear systems.

11. D. HERTZ, E. I. JURY and E. ZEHEB 1984 IEE Proceedings 131 (D), 52±56.
Simpli®ed analytic stability test for systems with commensurate time delays.

12. L. PONTRYAGIN 1955 Transaction of American Mathematics Society 2, 95±110. On
the zeros of some elementary transcendental functions.

13. E. P. POPOV 1962 The Dynamics of Automatic Control Systems. Oxford: Pergamon
Press.

14. A. M. KRALL 1967 Stability Techniques for Continuous Linear Systems. New York,
Gordon & Breach.



582 N. JALILI AND N. OLGAC

15. G. STEPAN 1989 Retarded Dynamical Systems: Stability and Characteristic
Functions. London: Longman Scienti®c and Technical. Pitman research notes in
mathematics series.

16. K. WALTON and J. E. MARSHALL 1987 Proceeding of the IEE 134 (D), 101±107. A
direct method for TDS stability analysis.

17. J. ACKERMANN 1993 Robust Control, Systems with Uncertain Physical Parameters.
Berlin, Springer.

18. D. FILIPOVIC and N. OLGAC 1998 IEEE/ASME Transaction on Mechatronics 3, 67±
72. Torsional delayed resonator with velocity feedback.



DELAYEDVIBRATIONABSORBERS583

A
P
P
E
N
D
IX

A
:
C
O
E
F
F
IC

IE
N
T

M
A
T
R
IX

A
N
D

P
O
L
Y
N
O
M
IA

L
S
U
S
E
D

IN
E
Q
U
A
T
IO

N
S
(2
4
)
A
N
D

(2
5
)

A
.1
.
C
O
E
F
F
IC

IE
N
T

M
A
T
R
IX

IN
E
Q
U
A
T
IO

N
(2
4
)

A
0 �

0
1

0
0

0
0

0
0

0
0

ÿ
k
a

m
a

ÿ
c
a

m
a

0
0

k
a

m
a

c
a

m
a

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

ÿ
k
a

m
a

ÿ
c
a

m
a

0
0

0
0

k
a

m
a

c
a

m
a

0
0

0
0

0
1

0
0

0
0

k
a

m
1

c
a

m
1

0
0

ÿ�k
1 �

k
2 �

k
a �

m
1

ÿ�c
1 �

c
2 �

c
a �

m
1

k
2

m
1

c
2

m
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

k
2

m
2

c
2

m
2

ÿ�k
2 �

k
3 �

m
2

ÿ�c
2 �

c
3 �

m
2

k
3

m
2

c
3

m
2

0
0

0
0

0
0

0
0

0
1

0
0

k
a

m
3

c
a

m
3

0
0

k
3

m
3

c
3

m
3

ÿ�k
3 �

k
a �

m
3

ÿ�c
3 �

c
a �

m
3

266666666666666666666666666664

377777777777777777777777777775
1
06

1
0 ,



584 N. JALILI AND N. OLGAC

At �
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A.2. COEFFICIENT POLYNOMIALS IN EQUATION (25)
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where

ua � mas
2 � cas� ka, u1 � m1s

2 � �c1 � c2 � ca�s� k1 � k2 � ka,

u2 � m2s
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2 � �c3 � ca�s� k3 � ka:
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